International Journal of Advance Computational Engineering and Networking (IJACEN)
Follow Us On :
current issues
Volume-12,Issue-2  ( Feb, 2024 )
Past issues
  1. Volume-12,Issue-1  ( Jan, 2024 )
  2. Volume-11,Issue-12  ( Dec, 2023 )
  3. Volume-11,Issue-11  ( Nov, 2023 )
  4. Volume-11,Issue-10  ( Oct, 2023 )
  5. Volume-11,Issue-9  ( Sep, 2023 )
  6. Volume-11,Issue-8  ( Aug, 2023 )
  7. Volume-11,Issue-7  ( Jul, 2023 )
  8. Volume-11,Issue-6  ( Jun, 2023 )
  9. Volume-11,Issue-5  ( May, 2023 )
  10. Volume-11,Issue-4  ( Apr, 2023 )

Statistics report
Jun. 2024
Submitted Papers : 80
Accepted Papers : 10
Rejected Papers : 70
Acc. Perc : 12%
Issue Published : 134
Paper Published : 1567
No. of Authors : 4088
  Journal Paper

Paper Title :
Incidents Management in Fiber Optic Transmission Networks by Neural Network Method

Author :Abdou Diop, Ibrahima Ngom, Idy Diop

Article Citation :Abdou Diop ,Ibrahima Ngom ,Idy Diop , (2022 ) " Incidents Management in Fiber Optic Transmission Networks by Neural Network Method " , International Journal of Advance Computational Engineering and Networking (IJACEN) , pp. 45-50, Volume-10,Issue-12

Abstract : Abstract - We propose a model to systematize in real time the management of incidents in fiber optic transmission networks. Concretely, this is done in several steps: first, images of the optical infrastructure of a telecommunication operator in Senegal are collected during the different interventions of survey, deployment, maintenance or supervision of the operator's optical network. Then, the collected images of the optical infrastructure are used to train a convolutional neural network (CNN) to predict from the image received as input, if there are defects or not on the optical fiber. Finally, we will review the experimental results of such a system based on artificial intelligence (AI). This automatic system, in real time, offers a gain in efficiency and productivity in the management of incidents by allowing the operator, thanks to artificial intelligence (AI) applied to image recognition, to identify and notify the competent team of incidents such as the cutting of the optical fiber. At the same time, such a system is also very useful for the telecom regulator to be able to verify the quality of the fiber optic installations, the respect of the standards of the operators and the fiber optic access providers from the images. Keywords - Fiber Optics, Incidents, Convolutional Neural Network, Artificial Intelligence, Image Recognition, Telecommunications.

Type : Research paper

Published : Volume-10,Issue-12


Copyright: © Institute of Research and Journals

| PDF |
Viewed - 44
| Published on 2023-03-10
IRAJ Other Journals
IJACEN updates
Paper Submission is open now for upcoming Issue.
The Conference World