Paper Title :Pedestrian Detection In Autonomous Driving Application Using Convolutional Neural Network
Author :R.Subhashni, E.Srie Vidhya Janani
Article Citation :R.Subhashni ,E.Srie Vidhya Janani ,
(2016 ) " Pedestrian Detection In Autonomous Driving Application Using Convolutional Neural Network " ,
International Journal of Advance Computational Engineering and Networking (IJACEN) ,
pp. 104-108,
Volume-4, Issue-6
Abstract : Pedestrian detection is of high importance to autonomous driving applications. Methods based on Neural
Network have shown significant improvements in detection rate, which makes them suitable for this application in which
reducing the False Discovery Rate is very important. Convolutional neural network (CNN) has achieved great success in the
field of computer vision. CNN takes input data only as image in fixed size and this arises problem in scaling. Hence this
paper discusses a filter based feature extraction. Henceforth, the object identification is done without any size constraint.
Pedestrian detection also faces the challenges of background clutter and large variations in pedestrian appearance due to pose
and changes in viewpoint etc. One of the key contributions is also towards this issue by training the network accordingly.
This paper ultimately focuses on reducing the false discovery rate and increasing the accuracy of the detection method. The
precision predictive value obtained is 51.46% with a false discovery rate of 48.54% using the benchmark data. The FMeasure
value is 65.35%. The number of iterations to minimize the error was achieved to be 1100 epoch and the
classification rate of the input data as objects and background is 97.40%.
Keywords— Convolutional Neural Network, Miss rate, False discovery rate, F-Measure.
Type : Research paper
Published : Volume-4, Issue-6
DOIONLINE NO - IJACEN-IRAJ-DOIONLINE-4775
View Here
Copyright: © Institute of Research and Journals
|
 |
| |
 |
PDF |
| |
Viewed - 69 |
| |
Published on 2016-07-08 |
|